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Many interesting and challenging physical mechanisms are concerned with the
mathematical notion of eigenstructure. In two-fluid models, complex phasic inter-
actions yield a complex eigenstructure which may raise numerous problems in nu-
merical simulations. In this paper, we develop a perturbation method to examine the
eigenvalues and eigenvectors of two-fluid models. This original method, based on
the stiffness of the density ratio, provides a convenient tool to study the relevance of
pressure momentum interactions and allows us to get precise approximations of the
whole flow eigendecomposition for minor requirements. Roe scheme is successfully
implemented and some numerical tests are presentethos Academic Press

1. INTRODUCTION

The numerical simulation of two-phase flow is a thrilling mathematical and indust
research subject and is of prime interest for the safety studies of nuclear reactors or f
flow encountered in steam generators of pressurized water reactors (PWR). The cor
local description of such flows is very complex and cannot be used for industrial simula
An averaging technique is used to derive models suitable for computation [7, 16]. W
motions of the two-phases are strongly coupled, the relative velocity of the two-flui
small and a simplified model is obtained; it consists of a system of conservation law:
the mass, momentum, and energy balance equations for the gas—liquid mixture. Hov
such mixture models are inefficient when the kinematic disequilibrium becomes signific
which typically occurs, for instance, in an annular flow or in the U-bend of a PWR’s ste
generator. In this circumstances, a set of equations for each phase must be consider
a two-fluid model must be simulated.
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Donor-cell differencing methods, using staggered grids, have been widely used for t
phase flow computations [22, 28]. In general they introduce a large amount of numer
diffusion. Moreover, they are not well suited for complex geometries. An alternative
to use finite volumes or finite elements. Finite element methods have been success
implemented for the simulation of steady states of mixture models [12]. Their extensior
transient flow is in progress. Also, a widespread use of upwind schemes [4, 9-11, 13,
21, 30]is growing in the simulation of fast transient flows. These schemes, introduced in
1960s for single-phase flows, are very convenient to predict gas—liquid mixture evolut
but their two-fluid extension is not straightforward and has been a subject of intens
research for the last 10 years [3, 5, 18, 27, 29, 32-35].

If U denotes the vector of unknowns, the constitutive equations for the averaged two-f
flow model are given by

atU +axf(U) + G(U)BXU +8xD(U, axU) = S(U),

which means that the evolution dfis governed by convection, diffusion, and source terms
Our aim in this paper is to compute finite volume schemes for hyperbolic systems [9,
13, 15]. This requires a good understanding of the convection part of the equation. Tt
in this work, we do not take into account the source and diffusion terms. We will stud
system of first-order partial differential equations of the type:

In order to solve this basic system, several difficulties have to be overcome:

e First, the system is not in conservation law form, due to the (k) dxU, and must
be carefully handled in the presence of discontinuities [6, 18]. Here, we do not discuss
issue and follow the approach of [18].

o Closure relations are needed because the system contains more unknowns than
tions. These relations are derived from empirical data, which is a major source of el
[7, 33]. In this paper, for simplicity, the liquid will be assumed to be incompressible ar
we will consider perfect gas for the vapor phase.

¢ Upwinding requires some knowledge of the eigenstructusg 6tU) + G(U), where
oy f denotes the jacobian df. Here, contrary to the case of single-phase flows, comple
phasic interactive processes, such as pressure interaction, complicate the computati
the eigenvalues and eigenvectors of the system.

o Finally, the system might fail to be hyperbolic. This might lead to an ill-posed proble
with oscillations in finite volume simulations ([25]).

In this work, we give particular attention to those two last difficulties. Although a
easy computation of the eigenstructure is of prime interest in industrial applications,
approaches have been proposed to solve this problem. Numerical algorithms can be 1
However, the eigenelements are needed at each face of the mesh and, even if improver
are in progress, we think that the use of a numerical algorithm may be expensive in C
time. Here, we prefer another approach in which simplifications in the computations .
obtained thanks to physical approximations; in [29], the case of small void fraction
studied, whereas in [18], explicit calculations are done, assuming that the relative velo
is very small compared to the average speed of sound. Also, some authors [27] suc
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taking into account a two-pressure model, which obviously simplifies the computati
but requires an additional closure relation. Related to this difficulty, the hyperbolicity
two-fluid models is not clearly understood; if we want to work with a hyperbolic mod
we have to modify the system by adding some differential correction terms, presum
neglected during the averaging process. The interfacial pressure correction proposed i
is one such example.

In this paper, we remark that such a complicated system is simplified when we neglec
pressure gradient in the liquid phase. Because the vapor density is smaller than the |
density, we introduce, by means of a scaling, the ratio of the phasic densities which en:
us to write the system as a simple system, with no pressure gradient in the liquid pf
plus a perturbation which contains this pressure gradient. Then we can use mathem
perturbation techniques to derive approximations of eigenvectors and eigenvalues ¢
whole system [2, 14, 17, 23]. We show that our density perturbation method is an effic
tool to study the relevance of the differential correction terms and consequently provic
convenient frame to study the hyperbolicity of such models and to compute upwind sche
for minor requirements.

The paper is organized as follows. In Section 2, we present the two-fluid model.
density perturbation method is introduced in Section 3, as well as some matheme
background. Then in Section 4, we get results on the hyperbolicity of the system \
respect to pressure corrections. We derive approximate expressions of the eigenvalue
eigenvectors in Section 5. We apply the method in the context of the Roe scheme
two-fluid computations in Section 6, and present numerical results in the last section.

2. THE TWO-FLUID MODEL

The mathematical evolution of the flow is governed by a physical system of bala
equations. It consists in two phasic mass equations and two phasic momentum equa
As in [18], we do not deal with the two phasic energy equations. The analysis of the sy:s
performed in our work can be easily extended to the full system containing these equat

The subscriptg and refer to the gas and the liquid phase, respectively. The nomenclat
is as follows:« is the volume fractiofag + o1 = 1), p is the densityp is the velocity, and
p is the pressure (see Delhagtal.[7] or Ishii [16] for a complete discussion).

Let U be the unknown vector of conservative variables:

o 0

o
u=| % |. 2.1)
a0

gPglg

The convection part of the governing equations is given below:

e Mass conservation equation
& (ko) + dx(akpkvk) =0, k=1,g; (2.2)
e mMomentum conservation equatjon

3 (orepuvi) + Oy (oaokvE) + awdx P+ (P — P)dxa = 0, k=1,9.  (2.3)
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The system contains more unknowns than equations and we need closure relations
e Constitutive laws.

—TFor simplicity, throughout this paper, the liquid phase is assumed to be incompr
sible:

o = const (2.4)
—the gas pressure is governed by a perfect gas law:
U, )
=p=p(——|=Tp!; 2.5
Pg =P p(l-Uﬂm oy (2.5)

—and the liquid pressure is assumed to be equal to the gas pressure:

p=p. (2.6)

o Interface pressure corrections), jis the phasic pressure at the gas—liquid interface
presumably neglected during the averaging process. The differential term} ) dxax,
called pressure corrections, must be modelled in order to close the system. Several pre
corrections can be found in the literature:

—The simplest one is theommon pressumelation, used, for example, inthe RELAP5
differential model (actually a virtual mass term, included in the RELAP5 model, has be
omitted here for the sake of simplicity; see [24, 28)):

p—py=0
2.7)

p—p =0
—Detailed closure models for bubbly flows have been presented by Lahey in [19]:
p—py=0
p— pli = Cp(ag)l)l(vg - UI)Z-

—Whereas some authors take into account pressure corrections for all flow confi
rations in such a way that we always have a hyperbolic system, I. Toumi ([35]) suggest

(2.8)

‘p—pg=p—p§ 2.9)

p— pl = agdm(vg — )2

with § ~ 1.
2
—Bestion proposes another development for this term in the CATHARE code mo

[1]:

p—py=p-—p
) 2.10
p—p = —SAPP_ (2. (2.10)

e In fact, noticing thatxg=1 — U1/ py, all these pressure corrections can be written ir
the generalized form

(p— pl) dxa = B(U)dxUz (2.11)

and satisfy some natural requirements:
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—We see thap — pL is homogeneous to a friction:

-hll=—"=3 2.12
[lp-nll = 7o (2.12)

—Pressure corrections must vanish when the gas velocity is equal to the liquid velo
(p—p) >0 as (vg—u)— 0. (2.13)

—In order to get a conservation law for the momentum of the mixture of the fluid, \
might ask these corrections to satisfy the requirement:
P—Py=p—p. (2.14)
But actually, we can see that the correction (2.8) does not satisfies this requirement <

do not insist on that point.
Finally, we have a closed system,

U + 0, f(U)+GU)U =0 (2.15)
with
o1 o1V
UgPgly
f(U) = o v (2.16)
agpgvé
and

0 0 0
0 0 0
ooy, P+oU) ody,p O
0

GWU) = (2.17)

O O oo

The mathematical modeling 6§(U ) and, (U) depends on the pressure correction chose
Moreover, due to term (2.17), the two-fluid system (2.15) cannot be put in a conserve
law form.

We want to point out that the density perturbation method (D.P.M) aims at studying
influence of pressure corrections on the eigenstructure of two-fluid models without debe
their physical relevance, which may be controversial [24, 25].

3. THE DENSITY PERTURBATION METHOD

3.1. Scaling of the Densities

We introduce two characteristic densiti@andpl0 and the new variables,; o, U:

Bg=pa/pg: B =p/pY, (3.18)
o fy
- oGP
G| %o (3.19)
a0V

®gPglg
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We set

1
P(og) = — P(pg) (3.20)
Pg

and we define
€= ,08/,0|0. (3.21)

A dimension analysis of (2.11) and (2.12) proves that

2
[[oW)]] = % (3.22)

Thus,6 is not proportional to a density and we can write

O 000

o o0o0o|l & .

au) 0 0 0 =) €9By(0). (3.23)
q=q

6,(U) 0 0 0 ’

In the examples cited above and treated below, we will segghat-1 or 0, andy; = 1.
Then, we get

%U + o, f(U) + HU)3,U =0, (3.24)
with
0 0 0 0
5 0 0 0 0] @ 5
HO) = | cag p emag,p 0 0 [T D €Ba0). (3.25)
agdg, P ogdg,p O O 4=

Expressions (3.24) and (3.25) must be compared with expressions (2.15) to (2.17).
density ratio depends on the configuration of the flow. For instance,

e steam generato#,~5 x 1072
e air—water bubbly flowe ~ 1073,

Hence, according to (3.25k,can be seen as an efficient perturbation parameter. As so
as the vapor volumey is not stiff («g > €/(1+ ¢€)), the system can be written as a simpler
one, perturbed by small terms.

3.2. Separation of the Phasic Pressure Interactions

From now on, we will omit” in the notations. We write system (3.24) in the form
U + A(U)oU =0, (3.26)

with
AU) =9y f(U)+HWU). (3.27)



DENSITY PERTURBATION METHOD 469
The small parameterintroduced above defines a splitting of the maigy ),

1
AU) = ZA1(U) + Ao(U) + Ay(U) (3.28)

with

A1 = B_1(U) (3.29)

(actually, we will see that for all pressure corrections, except the (2.9)Anes 0):

0 0 1 0
0 0 0 1
AoU) = | 2 0 2 0 |+BoW) (3.30)
agdy, P ogou, P — vg 0 2ug
and
0 0 0 O
0 0 0 0
A(U) = @iy, p ady,p O O + B1(U). (331)
0 0 0 O

We have split the phasic pressure interactions: the métyix) A_;(U) + Aq(U) would
represent a system with no pressure gradient on the liquid phase and it is expected tl
eigenvalues and eigenvectors are easy to find. Hence, perturbation methods are a r
way to take into account the contributionef; (U) in order to study the eigenstructure of
the original matrixA(U).

3.3. Perturbation Analysis, Definitions, and Results

Perturbation theory for linear operators [14, 17] provides a convenient way to analyse
well-posed nature of the system and to obtain computable approximations of the orig
matrix for minor requirements. We now go into our proper subject and review the neces
mathematical background (see the references for a more comprehensive treatment).

Let B be a real matrix of dimensiam(in our applicationsp = 4). We definesg, the set
of eigenvalues:

og = {A complex det(B — Ald) = 0} = {Aq, ..., Ak}, (3.32)

where “det” denotes the determinant which can be written in the form

detB — Ald) = (ho — A)™ (g — )™ -+ (e — 2)™; (3.33)

m; is the algebraic multiplicity of the eigenvalag and

k
> mj=n. (3.34)
j=1
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Moreover, at each eigenvalue there is associated the eigen-sulbspace
Kj={x/Bx=ijx}=Ker(B — 1;ld) (3.35)

andg;, the dimension oK, is the geometric multiplicity of the eigenvalug:

gj = diij . (336)
B is called the unpertubed operator and we assume that its eigenvalues and eigenvecto
easy to find. Let H be a real matrix; we want to study of the evolution of the eigenstruct
from B to B”:

B'= B+ ¢H. (3.37)
The perturbation theory of linear operators is an intense research subject. Here, we us
following results that can be found in [2] and are of prime interest in two-fluid application

Let 2j be an eigenvalue 0B; there arem; eigenvalues. (of B’) obtained from the

perturbation of the eigenvalug and it can be proved that

min{|x; — A

;i=1...mj} = O(9/™). (3.38)

This estimate will be of prime interest in Section 5. Actually, the analysis of the presst
corrections (2.7), (2.8), (2.9), and (2.10) for two-fluid models will lead to two crucial distin
cases:

e The strictly diagonalizable cas&@he unperturbed operator B is diagonalizable with
distinct real eigenvalues. Henam; =g; =1 for all j and it can be proved [2] that, for
smalle, B’ is diagonalizable with distinct real eigenvalues.

e The degenerate caseg is real but the unperturbed operator B is no longer diagc
nalizable; it has a nontrivial 2 Jordan block. The evolution of the degenerate root i
not straightforward and we will see thBt may be diagonalizable with distinct complex
eigenvalues even for arbitrary small

We will say that the system is well-posed, or hyperbolic, wBéris diagonalizable with
only real eigenvalues.

Remark3.1 In all the applications, except for the pressure correction (2.9), we will s
B = Ag andH = A;. When studying the pressure correction (2.9), we will have a matrix c
the type(1/¢)C + B + ¢H. The above analysis can easily be extended to this case but w
not be fully developed in this paper.

4. HYPERBOLICITY

4.1. Strictly Diagonalizable Systems

4.1.1. Study of the pressure correction (2.8)Ve requireC, > 0 for 0<ag < 1. The
application of the D.P.M. leads to the following expressioraf, A;, and Ag:

A,=0, (4.39)
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0 0O 0O
A — 0 0O 00O (4.40)
1= 8U1 p 8Uz p 0 0} ‘
0 0O 0O
and
0 0 1 0
0 0 0 1
Po=| 24 Colag)vg—u)?® O 2y o0 |- (44D
Olgaul p Olgﬁuz p — US 0 2Ug
Using the notations
agdu, P = Ch. v =vg— v, (4.42)
we can find eigenvalues & as trivial roots ofP,
Po() = [ — u)? = Cplag)v?] [( — vg)® — i), (4.43)

and, as soon as # 0, we easily get the decomposition &f (the equal velocity case will
be treated in Subsection 4.2):

Ao=PDP, (4.44)
with
M 0 00 Vg — Cm 0 0 0
b_|0 % 0 0f_ 0 u—/Cpf 0 .45
|0 0 O] 0 0 w++CpZ2 0 |” 7
0 0 0 a4 0 0 0 vg + Cm
0 &-w1+2C)? d-p(1-C)" 0
1 —fach, —2ach, 1
P= 2 _ .2 lor | 2 2 _ .2 lo | 2 (4.46)
0 (c&—v(1+1/Cp) )iz (B - vP(1-1,/Cp)?)s
A —%Cfn)xz —%C%)Lg Aa

(remember that densities are now dimensionle&gjs strictly diagonalizable and, accord-
ing to Subsection 3.3, it is expected that the small perturbatfarwill yield a well-posed
two-fluid model.

4.1.2. Study of the pressure correction (2.9)he study of this correction is similar to
the previous one. The application of the D.P.M. leads to the same expresgipmdfereas
Ap and A_; are now given by

0
0
0

—agd(vg — v )2

A1(U) = (4.47)

O oo o
O O oo
O O O o
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0 0 1 0
U 0 0 0 ! 4.48
Ao(U) = —v|2 + agd(vg — )2 0 2y O (4.48)
agdy, P agdy, P — vg 0 2
Then, setting
1
A 1o= EAfl + Ao, (4.49)
we easily get the eigendecompositionff; o:
A 1o=PDP, (4.50)
with
Vg — Cm 0 0 0
0 v — /agdv2 0 0
D= ! o : (4.51)
0 0 v+ /agdv? 0
0 0 0 vg + Cm
0 - v?(1+4 /ags)® & —v?(1- 14 /ags)® O
2 ogd 2 2 ogd 2
|t —tn Ot S t (4.52)
0 cZ—v}(1+ ‘Z—:‘\/ag(S)zkz Crzn—vrz(l—‘z—:' agé)zkg 0
o (=2 + L)y (~2G+ )k s

We obtain an expression similar to (4.45), (4.46) wWith= g8, except for the presence
of the term(agd/€)v? only in the set of eigenvectors. Hence, the two-fluid system is aga
expected to be well-posed.

4.2. A Degenerate System; The Common Pressure Model

Let us study the hyperbolicity of theommon pressuremodel (2.7). The computation
leads toA_; =0, whereas®y(U) and A;(U) are now given by

0 0 1 0
0 0 0 1
AO(U) = —U|2 0 2U| 0 , (453)
g 8U1 ] O{gauz pP—- Ué 0 ng
0 0O 0O
0O 0O
Ai(U) = o du.p du,p O O (4.54)
1 2
0 0O 0O
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Here, Ag(U) is not diagonalizable but we get the Jordan decomposition

Ag=RJR? (4.55)
with
2 0 0 O vg—Cm 0 O 0
0 » 1 0 0 u 1 0
Y=10 0 0]~ 0 0w O (4.56)
0 0 0 X 0 0 0 vg+Cm
and

0 A(v?P—cf) vP—vi+cq O

Pg 2 Pg ~2
o T “atm 1 (4.57)
0 A3(v?—c?) —2ur A3 0
A A3Bec? 0 A4

Pl

Now, in order to study the hyperbolicity of the model, we must look at the perturbat
operator in some detail. Lidskii [23] has proved that (with the same notation as in (3.3

Ay — d2 = /€K1 + 0(/€) (4.58)
/22 - )"2 = \/EKZ + o(ﬁ)s
wherex; andx; are the square roots ef:
K2 = l3Ar7 (4.59)

(ro is the second column d® andl5 the third line ofR~1). Here, we get the following value:

2
2_ _Ypg

agor 1 — (vr /Cm)?’ (4.60)

Subsonic multiphase flows are considered for whigtty, < 1; it follows thati) andaiy,
velocities are complex an#dly + € A; is diagonalizable with distinct complex eigenvalues
The density perturbation method provides an original way to see that the common pre:
model is ill-posed, which was already known by other methods.

Remarld.2 It may also happen that the addition of some pressure corrections leac
real eigenvalues even #g is only Jordanizable. In fact, such degenerate systems may
diagonalized with real eigenvalues under the conditiés- 0. This is the case for some
pressure corrections in the ordekadnd, as an example, the study of the Cathare correcti
(2.10) is left to the reader.

Remark4.3. In the equal-velocity case, =0), according to requirement (2.13), no
pressure correction can be taken into account. Consequéntly;: 0 andA;, Ag are given
by (4.53) and (4.54) withi, = 0. In particularx =0 and the system is not diagonalizable
such singular phase points have been studied differently in the case of the transitic
detonation in reactive granular materials and are known as resonant points [8].
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5. APPROXIMATE EIGENSTRUCTURE

We have studied the well-posed nature of two-fluid systems. Now we want to get :
proximate expressions of the eigenvalues and eigenvectors for minor requirements.
eigenstructure oB is explicitly known and we want to derive approximations of the eigen
structure oB 4 ¢ H. To this end, several algorithms can be found in the literature [2, 14, 2-
Because each eigenvalue or eigenvectd® efe H admits an expansion in fractional powers
of €, we only consider algorithms based on explicit formulas.

5.1. Strictly Diagonalizable Systems

We are searching fot(e) andi(e¢) such that
(B + eH)x(e) = A(e)X(¢€). (5.61)

According to estimate (3.38), we expand these terms into a seriesabout

X(e) = Zeix(i)

i>~0

Ae) = Zeik(i)

i>~0

(5.62)

and, substituting (5.62) in (5.61), we get

BX(0) + Y €' (BX(i) + Hx(i — 1)) = A(O)x(0) + > ¢' <Zx(m(i - j)). (5.63)

i>1 i>1 j=0

The formal identification of the series provides the approximations
Bx(0) = A(0)x(0), (5.64)

and fori > 1 (where we have sat (0)B = A(0)x' (0))

i—1
M) =X OHx( = 1) = x'(0)) x()rl — j). (5.65)
j=1
i—1
(B—2(0)x(i) = —Hx(i — D + > x(rl — ). (5.66)

j=0

One would expect that such formal series converge toward the eigenvalues and ei
vectors of the whole system. But the convergence is not obvious (see [2]). At least, it shc
be required that the condition numbef) = x' (0) H x(0) be small. In the case of the model
proposed by Lahey, studied in Section 4.1.1, setBng Ag andH = Aq, this term can be
computed directly and we obtain for the eigenvalye

AT = p(Cy) (5.67)
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with
o (L+ (v /vr)4/Cp)?
u(Cp) = o b AH WDV (5 gy
2\/ pgpr o] 1— (Ur /Cm)(1+(vr/|vr|)\/cp)
Whereas, for the correction (2.9) proposed by Toumi, we obtain
IT 1
Ay (D) = pulagd) + gv(agé) (5.69)
with
5 2
V(ogs) = — V290 M U ! (5.70)

2 gl 1= (v2/C2) (L + (ur/lvr )y /gd)?

As illustrated by the numerical experiments in Section 7.1, the computation of such for
series is expected to be numerically stable for the pressure correction (2.8) but unstab
the pressure correction (2.9).

As soon as the series converges, computation of the approximations will be inexpen

e Matrix—vector products involvingd are simple because at most only two or thre
elements oH are nonzero.

e The eigen-decomposition afB — A(0)Id) is known explicitly and, consequently,
(5.66) is easy to solve (in the space orthogonad(@).

o the method quickly converges: in practice we restrict our study=d, 2 (see the
numerical experiments in Section 7.1 or 7.2).

As an illustration, in the casg > 0, for the pressure correction (2.8), we find the first
order perturbations of the eigenvalues (where we havésat /Cy):

A, = Vg —Cm+€ 10l|,Og !
LT O e T (1= E (At /O (I—E(L— /C,)
}oq,og 1 vr
=V — \/_vr zagpl \/—1/(1+ \/—)2
. ) (5.71)
_ @) Og
UG G VG 17 f)z
1Olllog

Ay = Vg +Cm + € .
T T g (1+s(1+ﬁ))<1+s<1—¢c—p»

5.2. Degenerate System

It is well known that the derivation of stable approximations of the eigenvalues ¢
eigenvectors is less straightforward and more CPU expensive when the unperturbed n
has a Jordan block [2, 17, 23]. Without going into further detail, considering estimate (3.
or expansion (4.58), we see that

sy 1

e = e (5.72)
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and the derivation of stable algorithms to get the eigenstructure of such perturbation p
lems might be not obvious. As we want in this paper to use algorithms based on exp
expansion, we will only compute strictly diagonalizable models in the following numeric
applications for simplicity.

Remark5.4. Some authors suggest taking into account the natio,, in order to get
approximations of the eigenvalues and vectors [18, 34, 35]. We think it would be diffic
to extend the D.P.M. using the ratip/cy,. Indeed, because of requirement (2.13), a direc
computation shows that it would lead to a«2 Jordan block in the unperturbed matrix.
Hence the derivation of stable approximate expressions might be less straightforward.

6. DERIVATION OF THE ROE SOLVER

Upwind schemes are widely used to approximate solutions of nonlinear hyperbolic s
tems [4, 9-11, 13, 15, 21, 30]. Application to two-phase flow is not straightforward b
significant improvements have already been proposed by several authors [3, 18, 27
32-35]. Here, we do not discuss the additional difficulty due to the nonconservative fc
of the two-fluid model and, for simplicity, we do not deal with pressure corrections. V
briefly explain how to build the Roe solver in one space dimension and refer the reade
[35] for a more comprehensive treatment.

The objective is to solve the partial differential system

U + 0xdU) =0,
U (0, X) = Uo(X), (673)
t>0, XeQCR,

whereU (X, t) is the phase space vector (3.19) &hydx) is the initial data. Starting from a
spatial meslf2,

Q = JIxj-12. Xj412]. (6.74)
j

and following [35], we define a local linearizatien Of the nonconservative ternag at
the interfacex; 1> which enables us to get a local conservative model. Hence, the physi
flux @ at the interface is given by

®(U) = fU) + pU)

0
0
e (6.75)

€

ag
Integrating Eq. (6.73) onx|_1/2, Xj+1/2] x [t, t 4 dt] (Fig. 1), one can easily get the ex-

pression of the scheme

t++dt t
Ui —Y) | @i = Pj-1z

T ax 0 (6.76)
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- t+dt
mmaz(k‘m»',ﬁumomm m‘snm.cz}i(. R]Eb"iNN PROBLEM
Ny ‘I l‘ t
Uj_1 Uj Uj+1
X Xiun
FIG. 1. Evolution in time with upwind schemes.
with
1 .1
[t,t+dt] [Xj—1/2:Xj41/2]

Hence, at each cell there is associated an average constanu{aﬁueu (x,t) and, un-
der suitable CFL condition to avoid interaction beetwen interfacial consecutive Riem
solutions, the numerical flu;, 1/, is evaluated by the resolution of a Riemann probler
atxj+1/2 (Fig. 1). The way to approximate the solution of this Riemann problem leads
distinct schemes. We have used the Roe scheme [30] which consists of a local linearis
(6.78) of (6.73),

U + Are(Uj, Uj 1) U =0, (6.78)
whereA o satisfies the properties,

Arcediagonalizable
Aroe(U,U) =9y @ (6-79)
Aroe(Ujr1 —Uj) = @Uj1) — (Uj).

So, we obtain the expression of the numerical flux,

@Uj) + P(Uj41)
2

1
q)j+1/2 = - §|Aroe|(uj+l - Uj)y (6-80)

with the standard definitions:

A=PDP 1, D=diagy),
|D| = diag(|Ak|) (6.81)
|A| = P|D|P L.
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The computations yield the following Roe matrix at the cell interfagca »:

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
Are(Uj, Ujr) =152 0 25 0 | "€ | &au.p @an,p O O

(6.82)

("are the Roe average state quantities; see [35]). Hence, the perturbation methods dest
above are applied to get approximations of the eigenvalues and eigenvectors. We are
able to compute the Roe scheme for numerical experiments.

Remark6.5. The shock-relation for the system is defined by
Are(Uj, Uj 1) (Uj1 — Uj) = ®(Uj11) — @(Uj). (6.83)

We want to point out that the change of variables (3.18) simply consists of a multiplicati
of the initial unknown vector by the diagonal matGx

° 0 0 0
0 p3 0 0

- 84

Q=140 "0 o o] (6.84)
0 0 0 p

and consequently does not modify the initial shock-relation which would be derived frc
the system (2.15).

7. COMPUTATIONAL RESULTS

In all the numerical applications, the gas is assumed to be perfecj with.4.

7.1. Convergence Rate Estimate

To test the convergence rate of the method, we have computed four Roe matrices fo

two-fluid model; ART- and Al denote respectively the matrix obtained by the correctiol

(2.8) and the correction (2.9) with= 2, whereasA?T- and Al denote the ones obtained

H 1.
with € = 506-
0 0 1 0 0 0 1 0
RTL _ 0 0 0 1], T _ 0 0 0 1 (7.85)
oe 5789 5759 1 0]’ roe 5789 5759 1 O
18976 18873 0 2 18927 18873 0 2
0 0 1 0 0 0 1 0
—RTL 0 0 0 1] n1 _ 0 0 0 1
Aroe = 54 468 1 0]’ Aroe = 54 468 1 O (7.86)
67396 58595 0 2 65522 58595 0 2

We have computed a reference solution with a numerical computational routine and
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convergence rate estimate convergence rate estimate
ratio 1/500 ratio 1/20
5.0 T 1.0 T T
o
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. e " e
- * \A,\ _ =g B —
@ - Y e T,
,§ ‘\.\ _g ‘\\\
g sof e 2 -10 .-~
- ~ -
g ~. 3 N
.. ~. -~
@——e RTL comection .. e
-100 |  0—-0 T comection S ~20 - RTL carrection T
4 -0 {T comrection .
-15.0 =3.0
0.0 1.0 20 3.0 40 50 6.0 0.0 1.0 20 3.0 4.0 5.0 8.0
perturbation order perturbation order

FIG. 2. Evolution of the residue,.

have defined the residue,

1 4
M= —
162,

where| AR .| is the absolute value of the Roe matrix obtained withritheorder approxima-
tion (5.65) and (5.66) of the eigenstructure aAg,.| the reference computational solution.
We illustrate in Fig. 2 the evolution of the residue versus the perturbation oriderthe
several matrices mentioned above.

The numerical results are consistent with the mathematical results obtained in Sul
tion 5.1, in particular with the (5.67) and (5.69) condition numbers. Moreover, we see
the density perturbation method provides, for the correction (2.8), a quick algorithm wt
is of prime interest for industrial applications.

’Apoe|(i7 1) — 1Al (s J)
|Aroe|(i’ J)

, (7.87)

7.2. Two-Phase Shock-Tube

The shock-tube consists in a Riemann problem for the two-fluid model. In our study,
mathematical solution is composed of five constant states separated by shocks or raref
waves [20]. For two-fluid models, this is a test without a known solution for comparis
but more interesting from a numerical stability point of view.

7.2.1. SHOCKIInfluence of pressure corrections). The leftand right states are defi
in Table I. We have takepP = 1000 (Kg/n?) and py =1 (Kg/n¥). We have computed a
first-order D.P.M. for the correction (2.8) and we have used a numerical routine for
correction (2.9). Figure 3 shows the evolution in time of the vapor velocity and of the v
fraction. These results show that intermediate states are strongly dependent on the mo

TABLE |
SHOCK 1 Left state Right state
o 0.7 0.56
p(Pa) 96547 50000
vg(m/s) -0.4 -0.5
v (m/s) 0 0.2
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Influence of pressure corrections Influence of pressure corrections

400 colls ; T=0.450c;CFL=08 400 celis ; T = 0.4 soc ; CFL =0.8

0.45

vapor velocity ( m/s )
void fraction

—-+— 1.Toumi comection
~— R.T.Lahey cortection

-100 . 1 . 0.25 . . .
0.0 10.0 200 30.0 40.0 0.0 10,0 20.0 20.0 40.0

distance (m ) distance (m)

FIG. 3. Shock 1, influence of pressure corrections.

of the pressure correction chosen. We also want to underline that the use of a nume
routine for the correction (2.8) gives the same physical result as the use of the D.P.M.,
it is quite a lot more expensive in CPU time.

7.2.2. SHOCKZA larger relative velocity shock). Using the ratip/cp,, Tiselj and
Petelin [34] have shown that the accuracy of the approximate expressions for the eigenve
and eigenvectors is sufficient for < 0.05cy,, but CPU expensive numerical procedures
must be used otherwise. According to the mathematical result mentioned in Remark 5.4
the numerical results of Section 7.1, we wanted to test the related limitation of the D.P
with the correction (2.8) (Table Il). We have computed two value€ o= C* defined in
(2.8). Namely, in this vapor-velocity shocl, ~ ¢x/2, p§ =20 (Kg/n?), and o’ = 1000
(Kg/m?). Figure 4 shows the evolution of the shock for the pressure and theyratig; we
see that for this shock the numerical results obtained are stable.

7.2.3. SHOCKZInfluence of the Perturbation Order). In order to test the robustness
the method, we have computed a solution with a larger density kz@[iﬂ,GO (Kg/m?®) and
o =800 (Kg/n?), and with a void fraction close to 1. Initial shock is defined in Table I1I.
We see that the computed profile changes very much from the order 0 to the ord
approximation, but we gain very little precision when a fourth-order expansion is used.
emphasize here that a fourth-order approximation can be easily computed, even if it Se
to be rarely needed in practice (Fig. 5).

7.3. Water Faucet Problem

This numerical benchmark test was proposed by Ransom in [26]. No source terms
taken into account but Ransom has proposed an approximate analytical solution to
problem. Hence, this test is mentioned in several references.

TABLE I
SHOCK 2 Left state Right state
o 0.71 0.7
p(Pa) 265 x 10° 2.65x 10°
vg(m/s) 65 50

u(m/s) 1 1
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TABLE Il
SHOCK 3 Left state Right state
o 0.02 0.09
p(Pa) 154 16 157 10
vg(m/s) 12 5
vy (m/s) 4 1
Density Perturbation Method Density Perturbation Method

400 celis ; T = 0.07 sec ; CFL = 0.7

0.50

400 cells ; T= 0.07 sec ; CFL= 0.7

280000.0 %
o
]
3
270000.0 “,_.
3
T
S
g0
260000.0 3
c'=5
250000.0 L L L
0.0 10.0 200 30.0 40.0 X
distance (m ) distance ( m )
FIG. 4. Shock 2, a vapor-velocity shock.
Density Perturbation Method Density Perturbation Method
400 colls ; T = 0.15 sec ; CFL =0.7 400 colls ; T= 0.15 sec; CFL= 0.7
0.99 T T T 5.0 T T :
30
0
E o}
s
3
3
H
2 1O o ordero
g —-—- order 1
—— oder4
30|
L . . L ! L
%00 10.0 20.0 30.0 40.0 %0 100 20.0 200 40.0
distance (m ) distance (m }

FIG.5. Shock 3, influence of the perturbation order.
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Density Perturbation Method Density Perturbation Method
Water Faucet Problem ; 120 ceils ; CFL=0.95 Water Faucet Problem ; T=0.6 sec ; CFL=0.95
053 T T T T T 0.53 T T T T T
~—— 24 colls
048 1 odg | 777 120calis
) — Ta0.15sec 7 1200cells

. T=0.20 sec -—— analytical solution . \\
——- T=045sec ]

—— T=0.60 sec

Void fraction
Void fraction

\ ! ! ! .
0.0 2.0 4.0 6.0 80 10.0 12,0 0.0 2.0 4.0 6.0 8.0 10.0 120
Distance (m } Distance (m )

FIG. 6. \oid fraction evolution.

We have computed an air-water density ratio ﬁ) and a first-order D.P.M. for the
correction (2.8). We study the action of gravity on a vertical water jet. At the initial state
pipe is filled with a uniform colummn of water, the void fraction is 0.2, the velocity 10 m/-
and the pressure is 1@Pa. The boundary conditions are specified velocities of 10 m,
for the liquid and 0 m/s for the gas at the inlet, a constant pressure at the outlet. A v
wave propagation is observed in the pipe (Fig. 6). In order to test the convergence anc
stability character of the scheme, we have computed a spatial mesh refinement. There
oscillation at the discontinuity of the void fraction even when the number of cells comput
is high. Moreover, these results are in good agreement with the analytical solution propc

by Ransom (Fig. 6).
8. CONCLUSION

We have shown that the use of the density ratio provides a convenient way to study
convection part of several two-fluid models:

e Using perturbation analysis, the study of the hyperbolicity of such models can be d
easily.

o We have shown that, for some pressure corrections, the unperturbed system obte
with this ratio does not contain a Jordan block. This is important since the perturbatior
such matrices raises numerous numerical problems.

e Using amodel proposed by Lahey [19], we have derived stable numerical results. AF
scheme has been implemented and the eigenelements are approximated very econom

o A large relative velocity-shockv, ~ c¢n/2) and the water faucet problem have been
successfully tested.

e We also want to mention that a multidimensional extension of our work, on a moc
with interphase source terms, has been done by one of the authors in [5].

We think that the approach of the density perturbation method can be helpful in the
derstanding of phasic disequilibrium and can simplify multidimensional two-phase flc
industrial computations.

ACKNOWLEDGMENT

We thank the reviewers for critically reading the manuscript and making several useful remarks.



N

10.

11.

12.

13.

14.

15.

16.
17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

DENSITY PERTURBATION METHOD 483

REFERENCES

. D. Bestion, The physical closure laws in the CATHARE cadecl. Eng. Desigri24, 229 (1990).
. F. Chatelin, Valeurs propres de matrices (Masson, Paris, 1988).

. L. Combe and J. M. Herard, “Numerical modelling of compressible gas-solid two-phase flows,” E
Département Laboratoire National d’Hydraulique, Finite volumes for complex applications, 1996.

. F. Coquel, An introduction to the finite volume method and to upwind biased methddsctire Notes of
the CEA-EDF-INRIA School, November 18-21, 1996.

. J. Cortes, An asymptotic two-fluid model for Roe-scheme computati&@GEOMAS98 Proceeding®viley,
New York, 1998).

. G. Dal Maso, P. Le Floch, and P. Murat, Definition and weak stability of a non conservative ptbddath.
Pures Appl.74(6), 483 (1995).

. J.M. Delhaye, M. Giot, and M. L. Riethmulldhermohydraulics of Two-Phase Systems for Industrial Desig
and Nuclear Engineerin@von Karman Institute, McGraw—Hill Book, New York, 1981).

. P. Embid, J. Hunter, and A. Majda, Simplified asymptotic equations for the transition to detonation in rea
granular materialsSIAM J. Appl. Math52, 1199 (1992).

. R. Eymard, T. Gallouet, and R. Herbin, Finite volumes methodsaimdbook for Numerical Analysiedited
by Ciarlet Lions (North Holland, Amsterdam, 1998).

E. Godlewski and P. A. Raviart, Hyperbolic systems of conservation lawvgtiiematiques & Applications,
Ellipses(Zanichelli, Bologna, 1991).

S. K. Godunoy, Finite difference method for numerical computation of discontinuous solutions of the e
tions of fluid dynamicsMath Sb.32, 271 (1959).

M. Grandotto and P. Obry, Calculs dasllements diphasiques danséetangeurs par uneatiiode aux
éléments finisRev. EuropEIéments Finid(1) (1996).

A. Harten, P. D. Lax, and B. Van Leer, On upstream differencing and Godunov-type schemes for hyper
conservation lawsSIAM Rev25, 35 (1998).

E. J. Hinch,Perturbation MethodsTexts in Applied Mathematics (Cambridge Univ. Press, Cambridge
1991).

C. HirschNumerical Computation of Internal and External Flows. Vol. 2. Computational Methods for Invis
and Viscous Flow$§Wiley, Chichester, 1990).

M. Ishii, Thermo-Fluid Dynamic Theory of Two-Phase Fl&yrolles, Paris, 1975).

T. Kato,Perturbation Theory for Linear Operatgr@nd ed. (Springer-Verlag, Berlin, 1984).

A. Kumbaro and I. Toumi, An approximate linearized Riemann solver for a two-fluid mbd@mput. Phys.
124, 286 (1996).

R. T. Lahey, The prediction of phase distribution and separation phenomena using two-fluid maaglisgn
Heat Transfel(Elsevier Science, Amsterdam, 1992), p. 85.

P. D. LaxHyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Réniesal
Conf. Series in Appl. Math., Vol. 13 (SIAM, Philadelphia, 1973).

R.J. Levequéyumerical Methods for Conservation Lawectures in Mathematics (ETH, Zurich/Birkhauser,
Basel, 1990).

J. C. Micaelli, CATHARE, an advanced best-estimate code for PWR safety analysis, CEA Internal Re
France, 1987.

J. Moro, J. V. Burke, and M. L. Overton, On the Lidskii—Vishik—Lyvsternik perturbation theory for eigenvalt
of matrices with arbitrary Jordan structuB1IAM J. Matrix Anal. Appl18(4), 793 (1997).

H. Pokharna, M. Mori, and V. H. Ransom, Regularization of two-phase flow models: A comparisor
numerical and differential approachdsComput. Physl34, 282 (1997).

J. D. Ramshaw and J. A. Trapp, Characteristics, stability and short-wavelength phenomena in two-phas
equation system$Juclear Sci. Eng66, 93 (1978).

V. H. RansomNumerical Benchmark TestMultiphase Science and Technologie, Vol. 3, edited by G. F
Hewitt, J. M. Delhaye, and N. Zuber (Hemisphere,Washington, DC, 1987).



484 CORTES, DEBUSSCHE, AND TOUMI

27.

28.

20.

30.

31.

32.

33.
34.

35.

V. H. Ransom and D. L. Hicks, Hyperbolic two-pressure models for two-phaselfl@omput. Phy$3, 124
(1984).

V. H. Ransoret al. RELAP5/MOD1, Code manual. Vol. 1. Code Structure, System Models and Numeri
Method NUREG/CR-1826, 1982.

P. A. Raviart and L. Sainsaulieu, Mathematical and numerical modelling of two-phase fl@®@gnjputing
Methods in Applied Sciences and Engineeridjted by Glowinski (Nova Science, New York, 1991), p. 119.

P. L. Roe, Approximate Riemann solvers, parameter vectors and difference scheGmaput. Phys43,
357 (1981).

G. A. Sod, A survey of several finite difference methods for systems of non-linear hyperbolic conservati
laws,J. Comput. Phy27, 1 (1978).

H. Stadtke, G. Fronchello, and B. Worth, Numerical simulation of multidimensional two-phase flow based
flux vector splitting,Nucl. Eng. Desigri77, 199 (1997).

H. B. Stewart and B. Wendroff, Two-phase flow: Models and methbd@3mput. Phy<$6, 363 (1984).

I. Tiselj and S. Petelin, Modelling of two-phase flow with second-order accurate scheGmmput. Phys.
136, 503 (1997).

I. Toumi, An upwind numerical method for a 6-equations two-phase flow mbidel, Sci. Eng123 147
(1996).



