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Many interesting and challenging physical mechanisms are concerned with the
mathematical notion of eigenstructure. In two-fluid models, complex phasic inter-
actions yield a complex eigenstructure which may raise numerous problems in nu-
merical simulations. In this paper, we develop a perturbation method to examine the
eigenvalues and eigenvectors of two-fluid models. This original method, based on
the stiffness of the density ratio, provides a convenient tool to study the relevance of
pressure momentum interactions and allows us to get precise approximations of the
whole flow eigendecomposition for minor requirements. Roe scheme is successfully
implemented and some numerical tests are presented.c© 1998 Academic Press

1. INTRODUCTION

The numerical simulation of two-phase flow is a thrilling mathematical and industrial
research subject and is of prime interest for the safety studies of nuclear reactors or for the
flow encountered in steam generators of pressurized water reactors (PWR). The complete
local description of such flows is very complex and cannot be used for industrial simulation.
An averaging technique is used to derive models suitable for computation [7, 16]. When
motions of the two-phases are strongly coupled, the relative velocity of the two-fluid is
small and a simplified model is obtained; it consists of a system of conservation laws for
the mass, momentum, and energy balance equations for the gas–liquid mixture. However,
such mixture models are inefficient when the kinematic disequilibrium becomes significant,
which typically occurs, for instance, in an annular flow or in the U-bend of a PWR’s steam
generator. In this circumstances, a set of equations for each phase must be considered and
a two-fluid model must be simulated.
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Donor-cell differencing methods, using staggered grids, have been widely used for two-
phase flow computations [22, 28]. In general they introduce a large amount of numerical
diffusion. Moreover, they are not well suited for complex geometries. An alternative is
to use finite volumes or finite elements. Finite element methods have been successfully
implemented for the simulation of steady states of mixture models [12]. Their extension to
transient flow is in progress. Also, a widespread use of upwind schemes [4, 9–11, 13, 15,
21, 30] is growing in the simulation of fast transient flows. These schemes, introduced in the
1960s for single-phase flows, are very convenient to predict gas–liquid mixture evolution
but their two-fluid extension is not straightforward and has been a subject of intensive
research for the last 10 years [3, 5, 18, 27, 29, 32–35].

If U denotes the vector of unknowns, the constitutive equations for the averaged two-fluid
flow model are given by

∂tU + ∂x f (U )+ G(U )∂xU + ∂x D(U, ∂xU ) = S(U ),

which means that the evolution ofU is governed by convection, diffusion, and source terms.
Our aim in this paper is to compute finite volume schemes for hyperbolic systems [9, 10,
13, 15]. This requires a good understanding of the convection part of the equation. Thus,
in this work, we do not take into account the source and diffusion terms. We will study a
system of first-order partial differential equations of the type:

∂tU + ∂x f (U )+ G(U )∂xU = 0.

In order to solve this basic system, several difficulties have to be overcome:

• First, the system is not in conservation law form, due to the termG(U )∂xU , and must
be carefully handled in the presence of discontinuities [6, 18]. Here, we do not discuss this
issue and follow the approach of [18].
• Closure relations are needed because the system contains more unknowns than equa-

tions. These relations are derived from empirical data, which is a major source of error
[7, 33]. In this paper, for simplicity, the liquid will be assumed to be incompressible and
we will consider perfect gas for the vapor phase.
• Upwinding requires some knowledge of the eigenstructure of∂U f (U )+G(U ), where

∂U f denotes the jacobian off . Here, contrary to the case of single-phase flows, complex
phasic interactive processes, such as pressure interaction, complicate the computation of
the eigenvalues and eigenvectors of the system.
• Finally, the system might fail to be hyperbolic. This might lead to an ill-posed problem

with oscillations in finite volume simulations ([25]).

In this work, we give particular attention to those two last difficulties. Although an
easy computation of the eigenstructure is of prime interest in industrial applications, few
approaches have been proposed to solve this problem. Numerical algorithms can be used.
However, the eigenelements are needed at each face of the mesh and, even if improvements
are in progress, we think that the use of a numerical algorithm may be expensive in CPU
time. Here, we prefer another approach in which simplifications in the computations are
obtained thanks to physical approximations; in [29], the case of small void fraction is
studied, whereas in [18], explicit calculations are done, assuming that the relative velocity
is very small compared to the average speed of sound. Also, some authors [27] suggest
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taking into account a two-pressure model, which obviously simplifies the computations
but requires an additional closure relation. Related to this difficulty, the hyperbolicity of
two-fluid models is not clearly understood; if we want to work with a hyperbolic model,
we have to modify the system by adding some differential correction terms, presumably
neglected during the averaging process. The interfacial pressure correction proposed in [35]
is one such example.

In this paper, we remark that such a complicated system is simplified when we neglect the
pressure gradient in the liquid phase. Because the vapor density is smaller than the liquid
density, we introduce, by means of a scaling, the ratio of the phasic densities which enables
us to write the system as a simple system, with no pressure gradient in the liquid phase,
plus a perturbation which contains this pressure gradient. Then we can use mathematical
perturbation techniques to derive approximations of eigenvectors and eigenvalues of the
whole system [2, 14, 17, 23]. We show that our density perturbation method is an efficient
tool to study the relevance of the differential correction terms and consequently provides a
convenient frame to study the hyperbolicity of such models and to compute upwind schemes
for minor requirements.

The paper is organized as follows. In Section 2, we present the two-fluid model. The
density perturbation method is introduced in Section 3, as well as some mathematical
background. Then in Section 4, we get results on the hyperbolicity of the system with
respect to pressure corrections. We derive approximate expressions of the eigenvalues and
eigenvectors in Section 5. We apply the method in the context of the Roe scheme for
two-fluid computations in Section 6, and present numerical results in the last section.

2. THE TWO-FLUID MODEL

The mathematical evolution of the flow is governed by a physical system of balance
equations. It consists in two phasic mass equations and two phasic momentum equations.
As in [18], we do not deal with the two phasic energy equations. The analysis of the system
performed in our work can be easily extended to the full system containing these equations.

The subscriptsg andl refer to the gas and the liquid phase, respectively. The nomenclature
is as follows:α is the volume fraction(αg+αl = 1), ρ is the density,v is the velocity, and
p is the pressure (see Delhayeet al. [7] or Ishii [16] for a complete discussion).

Let U be the unknown vector of conservative variables:

U =


αlρl
αgρg

αlρlvl

αgρgvg

 . (2.1)

The convection part of the governing equations is given below:

• mass conservation equation,

∂t (αkρk)+ ∂x(αkρkvk) = 0, k = l , g; (2.2)

• momentum conservation equation,

∂t (αkρkvk)+ ∂x
(
αkρkv

2
k

)+ αk∂x pk +
(

pk − pi
k

)
∂xαk = 0, k = l , g. (2.3)
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The system contains more unknowns than equations and we need closure relations:
• Constitutive laws.

—For simplicity, throughout this paper, the liquid phase is assumed to be incompres-
sible:

ρl = const; (2.4)

—the gas pressure is governed by a perfect gas law:

pg = p = p

(
U2

1−U1/ρl

)
= 0ργg ; (2.5)

—and the liquid pressure is assumed to be equal to the gas pressure:

pl = p. (2.6)

• Interface pressure corrections. pi
k is the phasic pressure at the gas–liquid interface,

presumably neglected during the averaging process. The differential terms(p− pi
k)∂xαk,

called pressure corrections, must be modelled in order to close the system. Several pressure
corrections can be found in the literature:

—The simplest one is thecommon pressurerelation, used, for example, in the RELAP5
differential model (actually a virtual mass term, included in the RELAP5 model, has been
omitted here for the sake of simplicity; see [24, 28]):∣∣∣∣∣p− pi

g = 0

p− pi
l = 0.

(2.7)

—Detailed closure models for bubbly flows have been presented by Lahey in [19]:∣∣∣∣∣p− pi
g = 0

p− pi
l = Cp(αg)ρl (vg − vl )

2.
(2.8)

—Whereas some authors take into account pressure corrections for all flow configu-
rations in such a way that we always have a hyperbolic system, I. Toumi ([35]) suggests∣∣∣∣∣p− pi

g = p− pi
l

p− pi
l = αgδρl (vg − vl )

2
(2.9)

with δ ' 1
2.

—Bestion proposes another development for this term in the CATHARE code model
[1]: ∣∣∣∣∣∣∣

p− pi
g = p− pi

l

p− pi
l =

αgαlρgρl

αgρl + αlρg
(vg − vl )

2.
(2.10)

• In fact, noticing thatαg= 1− U1/ρl , all these pressure corrections can be written in
the generalized form (

p− pi
k

)
∂xαk = θk(U )∂xU1 (2.11)

and satisfy some natural requirements:
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—We see thatp− pi
k is homogeneous to a friction:[[

p− pi
k

]] = kg

m · s2
. (2.12)

—Pressure corrections must vanish when the gas velocity is equal to the liquid velocity:(
p− pi

k

)→ 0 as (vg − vl )→ 0. (2.13)

—In order to get a conservation law for the momentum of the mixture of the fluid, we
might ask these corrections to satisfy the requirement:

p− pi
g = p− pi

l . (2.14)

But actually, we can see that the correction (2.8) does not satisfies this requirement so we
do not insist on that point.

Finally, we have a closed system,

∂tU + ∂x f (U )+ G(U )∂xU = 0 (2.15)

with

f (U ) =


αlρlvl

αgρgvg

αlρlv
2
l

αgρgv
2
g

 (2.16)

and

G(U ) =


0 0 0 0
0 0 0 0

αl ∂U1 p+ θl (U ) αl ∂U2 p 0 0

αg∂U1 p+ θg(U ) αg∂U2 p 0 0

 . (2.17)

The mathematical modeling ofθg(U ) andθl (U ) depends on the pressure correction chosen.
Moreover, due to term (2.17), the two-fluid system (2.15) cannot be put in a conservation
law form.

We want to point out that the density perturbation method (D.P.M) aims at studying the
influence of pressure corrections on the eigenstructure of two-fluid models without debating
their physical relevance, which may be controversial [24, 25].

3. THE DENSITY PERTURBATION METHOD

3.1. Scaling of the Densities

We introduce two characteristic densitiesρ0
g andρ0

l and the new variables ˜ρg, ρ̃l , Ũ :

ρ̃g = ρg
/
ρ0

g; ρ̃l = ρl
/
ρ0

l , (3.18)

Ũ =


αl ρ̃l

αgρ̃g

αl ρ̃lvl

αgρ̃gvg

 . (3.19)
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We set

p̃(ρ̃g) =
1

ρo
g

p(ρg) (3.20)

and we define

ε = ρ0
g

/
ρ0

l . (3.21)

A dimension analysis of (2.11) and (2.12) proves that

[[θk(U )]] = m2

s2
, (3.22)

Thus,θk is not proportional to a density and we can write
0 0 0 0
0 0 0 0

θl (U ) 0 0 0

θg(U ) 0 0 0

=
q1∑

q=q0

εq Bq(Ũ ). (3.23)

In the examples cited above and treated below, we will see thatq0=−1 or 0, andq1= 1.
Then, we get

∂t Ũ + ∂x f (Ũ )+ H(Ũ )∂xŨ = 0, (3.24)

with

H(Ũ ) =


0 0 0 0
0 0 0 0

εαl ∂Ũ1
p̃ εαl ∂Ũ2

p̃ 0 0

αg∂Ũ1
p̃ αg∂Ũ2

p̃ 0 0

+
q1∑

q=q0

εqBq(Ũ ). (3.25)

Expressions (3.24) and (3.25) must be compared with expressions (2.15) to (2.17). The
density ratio depends on the configuration of the flow. For instance,

• steam generator,ε' 5× 10−2

• air–water bubbly flowε' 10−3.

Hence, according to (3.25).,ε can be seen as an efficient perturbation parameter. As soon
as the vapor volumeαg is not stiff (αg>ε/(1+ ε)), the system can be written as a simpler
one, perturbed by small terms.

3.2. Separation of the Phasic Pressure Interactions

From now on, we will omit̃ in the notations. We write system (3.24) in the form

∂tU + A(U )∂xU = 0, (3.26)

with

A(U ) = ∂U f (U )+ H(U ). (3.27)



            

DENSITY PERTURBATION METHOD 469

The small parameterε introduced above defines a splitting of the matrixA(U ),

A(U ) = 1

ε
A−1(U )+ A0(U )+ εA1(U ) (3.28)

with

A−1 = B−1(U ) (3.29)

(actually, we will see that for all pressure corrections, except the (2.9) one,A−1= 0):

A0(U ) =


0 0 1 0
0 0 0 1
−v2

l 0 2vl 0

αg∂U1 p αg∂U2 p− v2
g 0 2vg

+ B0(U ) (3.30)

and

A1(U ) =


0 0 0 0
0 0 0 0

αl ∂U1 p αl ∂U2 p 0 0

0 0 0 0

+ B1(U ). (3.31)

We have split the phasic pressure interactions: the matrix(1/ε)A−1(U )+ A0(U ) would
represent a system with no pressure gradient on the liquid phase and it is expected that its
eigenvalues and eigenvectors are easy to find. Hence, perturbation methods are a natural
way to take into account the contribution ofεA1(U ) in order to study the eigenstructure of
the original matrixA(U ).

3.3. Perturbation Analysis, Definitions, and Results

Perturbation theory for linear operators [14, 17] provides a convenient way to analyse the
well-posed nature of the system and to obtain computable approximations of the original
matrix for minor requirements. We now go into our proper subject and review the necessary
mathematical background (see the references for a more comprehensive treatment).

Let B be a real matrix of dimensionn (in our applications,n= 4). We defineσB, the set
of eigenvalues:

σB = {λ complex; det(B− λId) = 0} = {λ1, . . . , λk}, (3.32)

where “det” denotes the determinant which can be written in the form

det(B− λId) = (λ0− λ)m0(λ1− λ)m1 · · · (λk − λ)mk; (3.33)

mj is the algebraic multiplicity of the eigenvalueλ j and

k∑
j=1

mj = n. (3.34)
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Moreover, at each eigenvalue there is associated the eigen-subspaceK j :

K j ={x/Bx = λ j x}=Ker(B− λ j Id) (3.35)

andgj , the dimension ofK j , is the geometric multiplicity of the eigenvalueλ j :

gj = dimK j . (3.36)

B is called the unpertubed operator and we assume that its eigenvalues and eigenvectors are
easy to find. Let H be a real matrix; we want to study of the evolution of the eigenstructure
from B to B′:

B′ = B+ εH. (3.37)

The perturbation theory of linear operators is an intense research subject. Here, we use the
following results that can be found in [2] and are of prime interest in two-fluid applications.

Let λ j be an eigenvalue ofB; there aremj eigenvaluesλ′ji (of B′) obtained from the
perturbation of the eigenvalueλ j and it can be proved that

min
{∣∣λ j − λ′ji

∣∣; i = 1 . . .mj
} = O(εgj /mj ). (3.38)

This estimate will be of prime interest in Section 5. Actually, the analysis of the pressure
corrections (2.7), (2.8), (2.9), and (2.10) for two-fluid models will lead to two crucial distinct
cases:

• The strictly diagonalizable case.The unperturbed operator B is diagonalizable with
distinct real eigenvalues. Hence,mj = gj = 1 for all j and it can be proved [2] that, for
smallε, B′ is diagonalizable with distinct real eigenvalues.
• The degenerate case.σB is real but the unperturbed operator B is no longer diago-

nalizable; it has a nontrivial 2× 2 Jordan block. The evolution of the degenerate root is
not straightforward and we will see thatB′ may be diagonalizable with distinct complex
eigenvalues even for arbitrary smallε.

We will say that the system is well-posed, or hyperbolic, whenB′ is diagonalizable with
only real eigenvalues.

Remark3.1. In all the applications, except for the pressure correction (2.9), we will set
B= A0 andH = A1. When studying the pressure correction (2.9), we will have a matrix of
the type(1/ε)C+ B+ εH . The above analysis can easily be extended to this case but will
not be fully developed in this paper.

4. HYPERBOLICITY

4.1. Strictly Diagonalizable Systems

4.1.1. Study of the pressure correction (2.8).We requireCp> 0 for 0<αg< 1. The
application of the D.P.M. leads to the following expression ofA−1, A1, andA0:

A−1 = 0, (4.39)
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A1 = αl


0 0 0 0
0 0 0 0

∂U1 p ∂U2 p 0 0

0 0 0 0

 , (4.40)

and

A0 =


0 0 1 0
0 0 0 1

−v2
l + Cp(αg)(vg − vl )

2 0 2vl 0

αg∂U1 p αg∂U2 p− v2
g 0 2vg

 . (4.41)

Using the notations

αg∂U2 p = c2
m, vr = vg − vl , (4.42)

we can find eigenvalues ofA0 as trivial roots ofP0,

P0(λ) =
[
(λ− vl )

2− Cp(αg)v
2
r

][
(λ− vg)

2− c2
m

]
, (4.43)

and, as soon asvr 6= 0, we easily get the decomposition ofA0 (the equal velocity case will
be treated in Subsection 4.2):

A0 = P DP−1, (4.44)

with

D =


λ1 0 0 0

0 λ2 0 0

0 0 λ3 0

0 0 0 λ4

 =

vg − cm 0 0 0

0 vl −
√

Cpv2
r 0 0

0 0 vl +
√

Cpv2
r 0

0 0 0 vg + cm

, (4.45)

P =


0 c2

m − v2
r

(
1+ |vr |

vr

√
Cp
)2

c2
m − v2

r

(
1− |vr |

vr

√
Cp
)2

0

1 − ρg

ρl
c2

m − ρg

ρl
c2

m 1

0
(

c2
m − v2

r

(
1+ |vr |

vr

√
Cp
)2
)
λ2

(
c2

m − v2
r

(
1− |vr |

vr

√
Cp
)2
)
λ3 0

λ1 − ρg

ρl
c2

mλ2 − ρg

ρl
c2

mλ3 λ4

 (4.46)

(remember that densities are now dimensionless).A0 is strictly diagonalizable and, accord-
ing to Subsection 3.3, it is expected that the small perturbationεA1 will yield a well-posed
two-fluid model.

4.1.2. Study of the pressure correction (2.9).The study of this correction is similar to
the previous one. The application of the D.P.M. leads to the same expression ofA1, whereas
A0 andA−1 are now given by

A−1(U ) =


0 0 0 0
0 0 0 0
0 0 0 0

−αgδ(vg − vl )
2 0 0 0

 , (4.47)
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A0(U ) =


0 0 1 0
0 0 0 1

−v2
l + αgδ(vg − vl )

2 0 2vl 0

αg∂U1 p αg∂U2 p− v2
g 0 2vg

 . (4.48)

Then, setting

A−1,0 = 1

ε
A−1+ A0, (4.49)

we easily get the eigendecomposition ofA−1,0:

A−1,0 = P DP−1, (4.50)

with

D =


vg − cm 0 0 0

0 vl −
√
αgδv2

r 0 0

0 0 vl +
√
αgδv2

r 0

0 0 0 vg + cm

 , (4.51)

P =



0 c2
m − v2

r

(
1+ |vr |

vr

√
αgδ

)2
c2

m − v2
r

(
1− |vr |

vr

√
αgδ

)2
0

1 − ρg

ρl
c2

m + αgδ

ε
v2

r − ρg

ρl
c2

m + αgδ

ε
v2

r 1

0 c2
m − v2

r

(
1+ |vr |

vr

√
αgδ

)2
λ2 c2

m − v2
r

(
1− |vr |

vr

√
αgδ

)2
λ3 0

λ1
(− ρg

ρl
c2

m + αgδ

ε
v2

r

)
λ2

(− ρg

ρl
c2

m + αgδ

ε
v2

r

)
λ3 λ4


. (4.52)

We obtain an expression similar to (4.45), (4.46) withCp=αgδ, except for the presence
of the term(αgδ/ε)v

2
r only in the set of eigenvectors. Hence, the two-fluid system is again

expected to be well-posed.

4.2. A Degenerate System; The Common Pressure Model

Let us study the hyperbolicity of thecommon pressuremodel (2.7). The computation
leads toA−1= 0, whereasA0(U ) andA1(U ) are now given by

A0(U ) =


0 0 1 0
0 0 0 1
−v2

l 0 2vl 0

αg∂U1 p αg∂U2 p− v2
g 0 2vg

 , (4.53)

A1(U ) = αl


0 0 0 0
0 0 0 0

∂U1 p ∂U2 p 0 0

0 0 0 0

 . (4.54)
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Here,A0(U ) is not diagonalizable but we get the Jordan decomposition

A0 = R J R−1 (4.55)

with

J =


λ1 0 0 0

0 λ2 1 0

0 0 λ2 0

0 0 0 λ4

 =

vg − cm 0 0 0

0 vl 1 0

0 0 vl 0

0 0 0 vg + cm

 (4.56)

and

R=


0 λ2

(
v2

r − c2
m

)
v2

l − v2
g + c2

m 0

1 λ2
ρg

ρl
c2

m − ρg

ρl
c2

m 1

0 λ2
2

(
v2

r − c2
m

) −2vrλ
2
2 0

λ1 λ2
2
ρg

ρl
c2

m 0 λ4

 . (4.57)

Now, in order to study the hyperbolicity of the model, we must look at the perturbation
operator in some detail. Lidskii [23] has proved that (with the same notation as in (3.38)):∣∣∣∣∣λ′21

− λ2 = √ε κ1+ o(
√
ε)

λ′22
− λ2 = √ε κ2+ o(

√
ε),

(4.58)

whereκ1 andκ2 are the square roots ofκ2:

κ2 = l3A1r2 (4.59)

(r2 is the second column ofRandl3 the third line ofR−1). Here, we get the following value:

κ2 = −αlρg

αgρl

v2
r

1− (vr /cm)2
. (4.60)

Subsonic multiphase flows are considered for whichvr /cm< 1; it follows thatλ′21
andλ′22

velocities are complex andA0+ εA1 is diagonalizable with distinct complex eigenvalues.
The density perturbation method provides an original way to see that the common pressure
model is ill-posed, which was already known by other methods.

Remark4.2. It may also happen that the addition of some pressure corrections leads to
real eigenvalues even ifA0 is only Jordanizable. In fact, such degenerate systems may be
diagonalized with real eigenvalues under the conditionκ2> 0. This is the case for some
pressure corrections in the order ofε and, as an example, the study of the Cathare correction
(2.10) is left to the reader.

Remark4.3. In the equal-velocity case(vr = 0), according to requirement (2.13), no
pressure correction can be taken into account. Consequently,A−1= 0 andA1, A0 are given
by (4.53) and (4.54) withvr = 0. In particular,κ = 0 and the system is not diagonalizable;
such singular phase points have been studied differently in the case of the transition to
detonation in reactive granular materials and are known as resonant points [8].
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5. APPROXIMATE EIGENSTRUCTURE

We have studied the well-posed nature of two-fluid systems. Now we want to get ap-
proximate expressions of the eigenvalues and eigenvectors for minor requirements. The
eigenstructure ofB is explicitly known and we want to derive approximations of the eigen-
structure ofB+ εH . To this end, several algorithms can be found in the literature [2, 14, 23].
Because each eigenvalue or eigenvector ofB+ εH admits an expansion in fractional powers
of ε, we only consider algorithms based on explicit formulas.

5.1. Strictly Diagonalizable Systems

We are searching forx(ε) andλ(ε) such that

(B+ εH)x(ε) = λ(ε)x(ε). (5.61)

According to estimate (3.38), we expand these terms into a series aboutε∣∣∣∣∣∣∣∣∣
x(ε) =

∑
i≥0

ε i x(i )

λ(ε) =
∑
i≥0

ε iλ(i )
(5.62)

and, substituting (5.62) in (5.61), we get

Bx(0)+
∑
i≥1

ε i (Bx(i )+ Hx(i − 1)) = λ(0)x(0)+
∑
i≥1

ε i

(
i∑

j=0

x( j )λ(i − j )

)
. (5.63)

The formal identification of the series provides the approximations

Bx(0) = λ(0)x(0), (5.64)

and fori ≥ 1 (where we have setxl (0)B= λ(0)xl (0))

λ(i ) = xl (0)Hx(i − 1)− xl (0)
i−1∑
j=1

x( j )λ(i − j ), (5.65)

(B− λ(0))x(i ) = −Hx(i − 1)+
i−1∑
j=0

x( j )λ(i − j ). (5.66)

One would expect that such formal series converge toward the eigenvalues and eigen-
vectors of the whole system. But the convergence is not obvious (see [2]). At least, it should
be required that the condition numberλ(1)= xl (0)Hx(0) be small. In the case of the model
proposed by Lahey, studied in Section 4.1.1, settingB= A0 andH = A1, this term can be
computed directly and we obtain for the eigenvalueλ2

λRTL
2 (1) = µ(Cp) (5.67)
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with

µ(Cp) = 1

2
√

Cp

αlρg

αgρl

v2
r

|vr |
(1+ (vr /|vr |)

√
Cp)

2

1− (v2
r

/
c2

m

)
(1+ (vr /|vr |)

√
Cp)2

. (5.68)

Whereas, for the correction (2.9) proposed by Toumi, we obtain

λIT
2 (1) = µ(αgδ)+ 1

ε
ν(αgδ) (5.69)

with

ν(αgδ) = −
√
αgδ

2

αl

αg

v2
r

|vr |
1

1− (v2
r

/
c2

m

)
(1+ (vr /|vr |)

√
αgδ)2

. (5.70)

As illustrated by the numerical experiments in Section 7.1, the computation of such formal
series is expected to be numerically stable for the pressure correction (2.8) but unstable for
the pressure correction (2.9).

As soon as the series converges, computation of the approximations will be inexpensive:

• Matrix–vector products involvingH are simple because at most only two or three
elements ofH are nonzero.
• The eigen-decomposition of(B− λ(0)Id) is known explicitly and, consequently,

(5.66) is easy to solve (in the space orthogonal tox(0)).
• the method quickly converges: in practice we restrict our study toi = 1, 2 (see the

numerical experiments in Section 7.1 or 7.2).

As an illustration, in the casevr > 0, for the pressure correction (2.8), we find the first-
order perturbations of the eigenvalues (where we have setξ = vr /cm):

λ11 = vg − cm + ε 1

2

αlρg

αgρl
cm

1

(1− ξ(1+√Cp))(1−ξ(1−
√

Cp))

λ21 = vl −
√

Cpvr + ε 1

2

αlρg

αgρl

1√
Cp

vr

1/(1+√Cp)2− ξ2

λ31 = vl +
√

Cpvr + ε 1

2

αlρg

αgρl

1√
Cp

−vr

1/(1−√Cp)2− ξ2

λ41 = vg + cm + ε 1

2

αlρg

αgρl
cm

1

(1+ ξ(1+√Cp))(1+ ξ(1−
√

Cp))
.

(5.71)

5.2. Degenerate System

It is well known that the derivation of stable approximations of the eigenvalues and
eigenvectors is less straightforward and more CPU expensive when the unperturbed matrix
has a Jordan block [2, 17, 23]. Without going into further detail, considering estimate (3.38),
or expansion (4.58), we see that

∂λ′2i

∂ε
' 1√

ε
(5.72)
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and the derivation of stable algorithms to get the eigenstructure of such perturbation prob-
lems might be not obvious. As we want in this paper to use algorithms based on explicit
expansion, we will only compute strictly diagonalizable models in the following numerical
applications for simplicity.

Remark5.4. Some authors suggest taking into account the ratiovr /cm in order to get
approximations of the eigenvalues and vectors [18, 34, 35]. We think it would be difficult
to extend the D.P.M. using the ratiovr /cm. Indeed, because of requirement (2.13), a direct
computation shows that it would lead to a 2× 2 Jordan block in the unperturbed matrix.
Hence the derivation of stable approximate expressions might be less straightforward.

6. DERIVATION OF THE ROE SOLVER

Upwind schemes are widely used to approximate solutions of nonlinear hyperbolic sys-
tems [4, 9–11, 13, 15, 21, 30]. Application to two-phase flow is not straightforward but
significant improvements have already been proposed by several authors [3, 18, 27, 29,
32–35]. Here, we do not discuss the additional difficulty due to the nonconservative form
of the two-fluid model and, for simplicity, we do not deal with pressure corrections. We
briefly explain how to build the Roe solver in one space dimension and refer the reader to
[35] for a more comprehensive treatment.

The objective is to solve the partial differential system

∂tU + ∂x8(U ) = 0,

U (0, x) = U0(x),

t > 0; x ∈ Ä ⊂ R,
(6.73)

whereU (x, t) is the phase space vector (3.19) andU0(x) is the initial data. Starting from a
spatial meshÄ,

Ä =
⋃

j

[xj−1/2, xj+1/2], (6.74)

and following [35], we define a local linearization ˘αk of the nonconservative termsαk at
the interfacexj+1/2 which enables us to get a local conservative model. Hence, the physical
flux 8 at the interface is given by

8(U ) = f (U )+ p(U )


0
0
εᾰl

ᾰg

 . (6.75)

Integrating Eq. (6.73) on [xj−1/2, xj+1/2]× [t, t + dt] (Fig. 1), one can easily get the ex-
pression of the scheme

Ut+dt
j −Ut

j

dt
+ 8 j+1/2−8 j−1/2

dx
= 0 (6.76)
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FIG. 1. Evolution in time with upwind schemes.

with

8 j+1/2 = 1

dt

∫
[t,t+dt]

8
(
U
(
xj+ 1

2
, s
))

ds, Ut
j =

1

dx

∫
[xj−1/2,xj+1/2]

U (v, t) dv. (6.77)

Hence, at each cell there is associated an average constant valueUt
j for U (x, t) and, un-

der suitable CFL condition to avoid interaction beetwen interfacial consecutive Riemann
solutions, the numerical flux8 j+1/2 is evaluated by the resolution of a Riemann problem
at xj+1/2 (Fig. 1). The way to approximate the solution of this Riemann problem leads to
distinct schemes. We have used the Roe scheme [30] which consists of a local linearisation
(6.78) of (6.73),

∂tU +A roe(U j ,U j+1) ∂xU = 0, (6.78)

whereA roe satisfies the properties,

A roediagonalizable

A roe(U,U ) = ∂U8

A roe(U j+1−U j ) = 8(U j+1)−8(U j ).

(6.79)

So, we obtain the expression of the numerical flux,

8 j+1/2 = 8(U j )+8(U j+1)

2
− 1

2
|A roe|(U j+1−U j ), (6.80)

with the standard definitions:∣∣∣∣∣∣∣∣
A = PDP−1; D= diag(λk),

|D| =diag(|λk|)
|A| = P|D|P−1.

(6.81)
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The computations yield the following Roe matrix at the cell interfacexj+1/2:

Aroe(U j ,U j+1) =


0 0 1 0
0 0 0 1

−v̂2
l 0 2v̂l 0

ᾰg∂U1 p̂ ᾰg∂U2 p̂− v̂2
g 0 2v̂g

+ ε


0 0 0 0
0 0 0 0

ᾰl ∂U1 p̂ ᾰl ∂U2 p̂ 0 0

0 0 0 0


(6.82)

(̂ are the Roe average state quantities; see [35]). Hence, the perturbation methods described
above are applied to get approximations of the eigenvalues and eigenvectors. We are now
able to compute the Roe scheme for numerical experiments.

Remark6.5. The shock-relation for the system is defined by

Aroe(U j ,U j+1)(U j+1−U j ) = 8(Uj+1)−8(U j ). (6.83)

We want to point out that the change of variables (3.18) simply consists of a multiplication
of the initial unknown vector by the diagonal matrixQ,

Q =


ρo

l 0 0 0

0 ρo
g 0 0

0 0 ρo
l 0

0 0 0 ρo
g

 , (6.84)

and consequently does not modify the initial shock-relation which would be derived from
the system (2.15).

7. COMPUTATIONAL RESULTS

In all the numerical applications, the gas is assumed to be perfect withγ = 1.4.

7.1. Convergence Rate Estimate

To test the convergence rate of the method, we have computed four Roe matrices for the
two-fluid model;ARTL

roe and AIT
roe denote respectively the matrix obtained by the correction

(2.8) and the correction (2.9) withε= 1
20, whereasĀRTL

roe and ĀIT
roe denote the ones obtained

with ε= 1
500:

ARTL
roe =


0 0 1 0
0 0 0 1

578.9 575.9 1 0
1897.6 1887.3 0 2

 ; AIT
roe=


0 0 1 0
0 0 0 1

578.9 575.9 1 0
1892.7 1887.3 0 2

 (7.85)

ĀRTL
roe =


0 0 1 0
0 0 0 1
54 46.8 1 0

6739.6 5859.5 0 2

 ; ĀIT
roe=


0 0 1 0
0 0 0 1
54 46.8 1 0

6552.2 5859.5 0 2

 . (7.86)

We have computed a reference solution with a numerical computational routine and we
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FIG. 2. Evolution of the residuern.

have defined the residue,

rn = 1

16

4∑
i, j=1

∣∣∣∣
∣∣An

roe

∣∣(i, j )− |Aroe|(i, j )

|Aroe|(i, j )

∣∣∣∣, (7.87)

where|An
roe| is the absolute value of the Roe matrix obtained with thenth order approxima-

tion (5.65) and (5.66) of the eigenstructure and|Aroe| the reference computational solution.
We illustrate in Fig. 2 the evolution of the residue versus the perturbation ordern for the
several matrices mentioned above.

The numerical results are consistent with the mathematical results obtained in Subsec-
tion 5.1, in particular with the (5.67) and (5.69) condition numbers. Moreover, we see that
the density perturbation method provides, for the correction (2.8), a quick algorithm which
is of prime interest for industrial applications.

7.2. Two-Phase Shock-Tube

The shock-tube consists in a Riemann problem for the two-fluid model. In our study, the
mathematical solution is composed of five constant states separated by shocks or rarefaction
waves [20]. For two-fluid models, this is a test without a known solution for comparison
but more interesting from a numerical stability point of view.

7.2.1. SHOCK1(Influence of pressure corrections). The left and right states are defined
in Table I. We have takenρo

l = 1000 (Kg/m3) andρo
g= 1 (Kg/m3). We have computed a

first-order D.P.M. for the correction (2.8) and we have used a numerical routine for the
correction (2.9). Figure 3 shows the evolution in time of the vapor velocity and of the void
fraction. These results show that intermediate states are strongly dependent on the modeling

TABLE I

SHOCK 1 Left state Right state

αl 0.7 0.56
p(Pa) 96547 50000
vg(m/s) −0.4 −0.5
vl (m/s) 0 0.2
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FIG. 3. Shock 1, influence of pressure corrections.

of the pressure correction chosen. We also want to underline that the use of a numerical
routine for the correction (2.8) gives the same physical result as the use of the D.P.M., but
it is quite a lot more expensive in CPU time.

7.2.2. SHOCK2(A larger relative velocity shock). Using the ratiovr /cm, Tiselj and
Petelin [34] have shown that the accuracy of the approximate expressions for the eigenvalues
and eigenvectors is sufficient forvr < 0.05cm, but CPU expensive numerical procedures
must be used otherwise. According to the mathematical result mentioned in Remark 5.4 and
the numerical results of Section 7.1, we wanted to test the related limitation of the D.P.M.
with the correction (2.8) (Table II). We have computed two values ofCp=C∗ defined in
(2.8). Namely, in this vapor-velocity shock,vr ' cm/2, ρ0

g= 20 (Kg/m3), andρ0
l = 1000

(Kg/m3). Figure 4 shows the evolution of the shock for the pressure and the ratiovr /cm; we
see that for this shock the numerical results obtained are stable.

7.2.3. SHOCK3(Influence of the Perturbation Order). In order to test the robustness of
the method, we have computed a solution with a larger density ratio,ρ0

g= 60 (Kg/m3) and
ρ0

l = 800 (Kg/m3), and with a void fraction close to 1. Initial shock is defined in Table III.
We see that the computed profile changes very much from the order 0 to the order 1

approximation, but we gain very little precision when a fourth-order expansion is used. We
emphasize here that a fourth-order approximation can be easily computed, even if it seems
to be rarely needed in practice (Fig. 5).

7.3. Water Faucet Problem

This numerical benchmark test was proposed by Ransom in [26]. No source terms are
taken into account but Ransom has proposed an approximate analytical solution to the
problem. Hence, this test is mentioned in several references.

TABLE II

SHOCK 2 Left state Right state

αl 0.71 0.7
p(Pa) 2.65× 105 2.65× 105

vg(m/s) 65 50
vl (m/s) 1 1
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TABLE III

SHOCK 3 Left state Right state

αl 0.02 0.09
p(Pa) 1.54 105 1.57 105

vg(m/s) 12 5
vl (m/s) 4 1

FIG. 4. Shock 2, a vapor-velocity shock.

FIG. 5. Shock 3, influence of the perturbation order.
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FIG. 6. Void fraction evolution.

We have computed an air–water density ratioε= 1
1000 and a first-order D.P.M. for the

correction (2.8). We study the action of gravity on a vertical water jet. At the initial state, a
pipe is filled with a uniform colummn of water, the void fraction is 0.2, the velocity 10 m/s,
and the pressure is 105 Pa. The boundary conditions are specified velocities of 10 m/s
for the liquid and 0 m/s for the gas at the inlet, a constant pressure at the outlet. A void
wave propagation is observed in the pipe (Fig. 6). In order to test the convergence and the
stability character of the scheme, we have computed a spatial mesh refinement. There is no
oscillation at the discontinuity of the void fraction even when the number of cells computed
is high. Moreover, these results are in good agreement with the analytical solution proposed
by Ransom (Fig. 6).

8. CONCLUSION

We have shown that the use of the density ratio provides a convenient way to study the
convection part of several two-fluid models:

• Using perturbation analysis, the study of the hyperbolicity of such models can be done
easily.
• We have shown that, for some pressure corrections, the unperturbed system obtained

with this ratio does not contain a Jordan block. This is important since the perturbation of
such matrices raises numerous numerical problems.
• Using a model proposed by Lahey [19], we have derived stable numerical results. A Roe

scheme has been implemented and the eigenelements are approximated very economically.
• A large relative velocity-shock(vr ' cm/2) and the water faucet problem have been

successfully tested.
• We also want to mention that a multidimensional extension of our work, on a model

with interphase source terms, has been done by one of the authors in [5].

We think that the approach of the density perturbation method can be helpful in the un-
derstanding of phasic disequilibrium and can simplify multidimensional two-phase flow
industrial computations.
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Département Laboratoire National d’Hydraulique, Finite volumes for complex applications, 1996.

4. F. Coquel, An introduction to the finite volume method and to upwind biased methods, inLecture Notes of
the CEA-EDF-INRIA School, November 18-21, 1996.

5. J. Cortes, An asymptotic two-fluid model for Roe-scheme computation, inECCOMAS98 Proceedings(Wiley,
New York, 1998).

6. G. Dal Maso, P. Le Floch, and P. Murat, Definition and weak stability of a non conservative product,J. Math.
Pures Appl.74(6), 483 (1995).

7. J. M. Delhaye, M. Giot, and M. L. Riethmuller,Thermohydraulics of Two-Phase Systems for Industrial Design
and Nuclear Engineering(Von Karman Institute, McGraw–Hill Book, New York, 1981).

8. P. Embid, J. Hunter, and A. Majda, Simplified asymptotic equations for the transition to detonation in reactive
granular materials,SIAM J. Appl. Math.52, 1199 (1992).

9. R. Eymard, T. Gallouet, and R. Herbin, Finite volumes methods, inHandbook for Numerical Analysis, edited
by Ciarlet Lions (North Holland, Amsterdam, 1998).

10. E. Godlewski and P. A. Raviart, Hyperbolic systems of conservation laws, inMathématiques & Applications,
Ellipses(Zanichelli, Bologna, 1991).

11. S. K. Godunov, Finite difference method for numerical computation of discontinuous solutions of the equa-
tions of fluid dynamics,Math Sb.32, 271 (1959).

12. M. Grandotto and P. Obry, Calculs des ´ecoulements diphasiques dans les ´echangeurs par une m´ethode aux
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